Stain Isolation-based Guidance for Improved Stain Translation
Nicolas Brieu, Felix J. Segerer, Ansh Kapil, Philipp Wortmann, Günter Schmidt
Show abstract - Show schedule - Proceedings - PDF - Reviews
Unsupervised and unpaired domain translation using generative adversarial neural networks, and more precisely CycleGAN, is state of the art for the stain translation of histopathology images. It often, however, suffers from the presence of cycle-consistent but non structure-preserving errors. We propose an alternative approach to the set of methods which, relying on segmentation consistency, enable the preservation of pathology structures. Focusing on immunohistochemistry (IHC) and multiplexed immunofluorescence (mIF), we introduce a simple yet effective guidance scheme as a loss function that leverages the consistency of stain translation with stain isolation. Qualitative and quantitative experiments show the ability of the proposed approach to improve translation between the two domains
Hide abstract
Friday 8th July
Poster Session 3.2 - onsite 11:00 - 12:00, virtual 15:20 - 16:20 (UTC+2)
Hide schedule