Hierarchical Optimal Transport for Comparing Histopathology Datasets

Anna Yeaton, Rahul G Krishnan, Rebecca Mieloszyk, David Alvarez-Melis, Grace Huynh

Show abstract - Show schedule - Proceedings - PDF - Reviews

Scarcity of labeled histopathology data limits the applicability of deep learning methods to under-profiled cancer types and labels. Transfer learning allows researchers to overcome the limitations of small datasets by pre-training machine learning models on larger datasets similar to the small target dataset. However, similarity between datasets is often determined heuristically. In this paper, we propose a principled notion of distance between histopathology datasets based on a hierarchical generalization of optimal transport distances. Our method does not require any training, is agnostic to model type, and preserves much of the hierarchical structure in histopathology datasets imposed by tiling. We apply our method to H&E stained slides from The Cancer Genome Atlas from six different cancer types. We show that our method outperforms a baseline distance in a cancer-type prediction task. Our results also show that our optimal transport distance predicts difficulty of transferability in a tumor vs. normal prediction setting.
Hide abstract

Friday 7th July
Poster Session 3.2 - onsite 11:00 - 12:00, virtual 15:20 - 16:20 (UTC+2)
Hide schedule