Super-resolution of portable low-field MRI in real scenarios: integration with denoising and domain adaptation
Sonia Laguna, Riana Schleicher, Benjamin Billot, Pamela Schaefer, Brenna McKaig, Joshua N. Goldstein, Kevin N. Sheth, Matthew S. Rosen, W. Taylor Kimberly, Juan Eugenio Iglesias
Show abstract - Show schedule - Proceedings - PDF - Reviews
Portable low-field MRI has the potential to revolutionize neuroimaging, by enabling point-of-care imaging and affordable scanning in underserved areas. The lower resolution and signal-to-noise ratio of these scans preclude image analysis with existing tools. Super-resolution (SR) methods can overcome this limitation, but: (i) training with downsampled high-field scans fails to generalize; and (ii) training with paired low/high-field data is hard due to the lack of perfectly aligned images. Here, we present an architecture that combines denoising, SR and domain adaptation modules to tackle this problem. The denoising and SR components are pretrained in a supervised fashion with large amounts of existing high-resolution data, whereas unsupervised learning is used for domain adaptation and end-to-end finetuning. We present preliminary results on a dataset of 11 low-field scans. The results show that our method enables segmentation with existing tools, which yield ROI volumes that correlate strongly with those derived from high-field scans (ρ > 0.8).
Hide abstract
Thursday 7th July
Poster Session 2.1 - onsite 15:20 - 16:20, virtual 11:00 - 12:00 (UTC+2)
Hide schedule