Inference of captions from histopathological patches
Masayuki Tsuneki, Fahdi Kanavati
Show abstract - Show schedule - Proceedings - PDF - Reviews
Computational histopathology has made significant strides in the past few years, slowly getting closer to clinical adoption. One area of benefit would be the automatic generation of diagnostic reports from H&E-stained whole slide images which would further increase the efficiency of the pathologists' routine diagnostic workflows. In this study, we compiled a dataset of histopathological captions of stomach adenocarcinoma endoscopic biopsy specimens which we extracted from diagnostic reports and paired with patches extracted from the associated whole slide images. The dataset contains a variety of gastric adenocarcinoma subtypes. We trained a baseline attention-based model to predict the captions from features extracted from the patches and obtained promising results. We make the captioned dataset of 260K patches publicly available.
Hide abstract
Wednesday 6th July
Poster Session 1.1 - onsite 15:20 - 16:20, virtual 11:00 - 12:00 (UTC+2)
Hide schedule