Scoliosis Measurement on DXA Scans Using a Combined Deep Learning and Spinal Geometry Approach
Emmanuelle Bourigault, Amir Jamaludin, Timor Kadir, Andrew Zisserman
Show abstract - Show schedule - Proceedings - PDF - Reviews
We propose improvements to an automated method for scoliosis measurement. Our main novelty is the use of a spline to better model the curve of the spine, and we employ pseudo- labelling to re-train the segmentation step to mitigate the domain gap when adapting to a new dataset. We obtain promising results with a good fit of our smoothed curve to approximate the spinal midpoints in severe scoliosis cases, and obtain good agreement against human ground-truth. This work is relevant for improving the severity grading of scoliosis and potentially aiding in the treatment management of scoliosis.
Hide abstract
Wednesday 6th July
Poster Session 1.1 - onsite 15:20 - 16:20, virtual 11:00 - 12:00 (UTC+2)
Hide schedule